

EXPERIMENTAL AND NUMERICAL AEROACOUSTICS RESULTS OF STRUT-BRACED WING CONFIGURATION

PRESENTERS:

L. BOWEN¹, S. LE BRAS²

CONTRIBUTORS:

H. K. JAWAHAR¹, M. AZARPEYVAND¹, L. ERBIG² ¹UNIVERSITY OF BRISTOL, ²SIEMENS DIGITAL INDUSTRIES SOFTWARE

Co-funded by the European Union

OUTLINE OF THE PRESENTATION

Introduction

- I. Test campaign
- **II.** Numerical simulations

Conclusions

INTRODUCTION

Joint experimental and numerical study - UoB/Siemens collaboration

Main objectives from experimental side:

- Understand effect of the strut and junction on aeroacoustic characteristics of a high-lift device
- Conduct a parametric study on the strut height and mounting location

Main objectives from numerical side:

- Provide further insight into sound source mechanisms thanks to simulation
- Consolidate our best practices for aeroacoustic simulations

INTRODUCTION

Objectives:

- To understand any potential noise signature changes from strut junction
- 30P30N retracted chord is like typical of this configuration
- Strut junction with wing likely to be around high-lift devices

OUTLINE OF THE PRESENTATION

Introduction

- I. Test campaign
- **II.** Numerical simulations

Conclusions

TEST CAMPAIGN

SIEMENS

- University of Bristol Aeroacoustic Wind tunnel
- Far-field microphone array of 23x GRAS Free-field microphones

EXPERIMENTAL METHODS

(a)

Side plates

Microphone array

Turn table

- 30P30N airfoil c=0.35m
- 3 strut heights at 2 chordwise locations
- Flow velocities U_{\sim} =25,30 and 34 m/s
- Geometric angles of attack of $\alpha = 12^\circ, 14^\circ, 16^\circ$ and 18°
- 103 static pressure taps
- 18 surface pressure microphones at 3 chordwise locations
- Measurements of *C*_P, surface pressure fluctuations, velocity measurements using CTA hotwire.

Nozzle

500 mm

STRUT GEOMETRY

PRESSURE COEFFICIENT

FAR-FIELD NOISE – OASPL DIRECTIVITY

the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

VELOCITY MEASUREMENTS

- Velocity measurements made with 2-component x-wire probe.
- Measuring U and V velocity
- Extensive measurements for small height and Albatros configurations

VELOCITY MEASUREMENTS

an Union U-HARWARD: Second Dissemination Event: May 24, 2022

VELOCITY MEASUREMENTS

ean Union U-HARWARD: Second Dissemination Event: May 24, 2022

OUTLINE OF THE PRESENTATION

Introduction

- I. Test campaign
- **II. Numerical simulations**

Conclusions

SELECTED CONFIGURATION FOR SIMULATIONS: ALBATROS

Albatros trailing-edge mounting case selected for its reduced noise footprint compared to the no-strut configuration

Main parameters	
Stowed chord <i>c</i>	0.35 m
Span <i>l</i>	0.53 m
AoA	14 deg
Velocity U_{∞}	30 m/s
Mach number M_{∞}	0.0875
Chord-based Reynolds number Re _c	7.02×10^{5}

Simcenter STAR-CCM+

- Aeroacoustic simulations with/without strut
- For realistic flow conditions, wind tunnel nozzle and side-plates included in the simulations

DIRECT NOISE COMPUTATIONS

- Simcenter STAR-CCM+
 - Multiphysics CFD software
 - Finite-volume unstructured solver, 2nd order accurate in space and time
- Compressible simulations
 - To capture slat noise mechanisms
- Detached-Eddy Simulations (DES)
 - SST $k \omega$ detached-eddy model
 - DES grids of 45M cells w/o strut and 60M cells with strut
 - $y^+ < 2$ at the airfoil walls
 - Mesh resolved up to 4 kHz in the acoustic region
 - Initial condition: RANS including the wind tunnel nozzle
 - Computations
 - 40 000 time steps per DES (T=0.32 s)
 - Statistics collected over of period of 0.24 s

NUMERICAL RESULTS

• Instantaneous views of streamwise velocity field in the mid-span plane

Wind tunnel jet flow strongly deflected by the presence of the wing, with jet shear layers reaching microphones located at extremity of the arc.

Co-funded by the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

AERODYNAMIC RESULTS

• Pressure coefficient on high-lift device in the mid-span plane

Numerical results obtained from time-averaged DES data. Excellent agreement with experimental data.

FAR-FIELD NOISE RESULTS

• Power spectral density at r = 1.75 m and $\theta = 90^{\circ}$

Tonal frequencies well-predicted in DES simulations, amplitude of the main peak well-captured. With strut, overprediction of the higher modes maybe due to DES turbulence modelling. Under investigation.

FURTHER INSIGHT INTO SOUND PROPAGATION THANKS TO SIMULATION

• Time derivative of the pressure fluctuations on a cylindrical section at 1 m from the wing

With strut, the acoustic field becomes highly asymmetric. On-going work to better understand the sound source mechanisms at stake.

Co-funded by the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

CONCLUSIONS

Extensive experimental test campaign of strut configurations

- Mean C_P values for each configuration show little change
- Far-field noise demonstrates sensitivity to strut height and mounting location
- Velocity results hint towards a local reduction of angle of attack on strut side in wake
- Numerical simulations carried out for one wing-strut configuration
 - DES results in very good agreement with experimental data
 - The presence of the strut leads to an asymmetry of the acoustic field
 - Towards improved best practices for aeroacoustic simulations

SIFMENS

Co-funded by the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

THANK FOR YOUR ATTENTION!

ANY QUESTIONS?

Visit our online stand at https://cleansky.virtualfair.be/

Co-funded by the European Union