

HIGH-FIDELITY STRUCTURAL AND AERODYNAMIC EVALUATIONS OF STRUT BRACED WING CONFIGURATION

> May 24, 2023 ONLINE WORKSHOP

Co-funded by the European Union

CONTENTS

- Modelling of the reference configuration
- Structural design study
 - DESCRIPTION OF THE SIZING PROCEDURE
 - RESULTS OF THE AEROELASTIC ANALYSIS
 - SIZING RESULTS AND PRELIMINARY FLUTTER ANALYSES
- Aerodynamic simulations
 - AUTOMATIC OPTIMIZATION PROCESS
 - MANUAL AERODYNAMIC DESIGN PHASE

REFERENCE SBW CONFIGURATIONS FROM FAST-OAD

Reproduction of optimum SBW configuration from FAST-OAD

Wing planform characteristics		
Parameter	Symbol	Value
Wing area	Sref	160 m²
Wing span	b	55.14 m
Mean Aerodynamic Chord	MAC	3.20 m
Aspect ratio	AR	19
Taper Ratio	TR	0.3
Sweep angle	φ	19°
Root Profile Characteristics		
Chord	С	4.3 m
Relative thickness	t/c	0.1
Position in y	у	1.96 m
Tip Profile Characteristics		
Chord	С	1.29 m
Relative thickness	t/c	0.1
Position in y	у	27.57 m
Strut planform characteristics		
Chord	С	1.0 m
junction	y/b	65 %
Sweep angle	φ	13 °

AEROELASTIC ANALYSIS

AEROELASTIC ANALYSIS MODEL GENERATION

AEROELASTIC ANALYSIS SIZING PROCEDURE

6

ONERA

THE FRENCH AEROSPACE LAB

Wingbox parametrisation

AEROELASTIC ANALYSIS SIZED MODEL

AERODYNAMIC AUTOMATIC OPTIMISATION STUDY

AUTOMATIC DESIGN PROCESS

AERODYNAMIC T OPTIMISATION PROBLEM

Parameterization:

- Twist law along the wing and strut span
- CST parameterization of the wing and strut profiles using 14 variables (7 for thickness and 7 for camber for each section) starting from the ALBATROS profiles => 87 parameters

Optimization conditions:

- 3 cruise conditions at M = 0.75:
 - beginning
 - middle - end
- g CL = 0.642 CL = 0.58 CL = 0.523

-0

Co-funded by the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

MM1 M=0.78 sur le graph mais design fait à M=0.75... Sais-tu ce que montre Christophe pour être cohérent? Meheut Michael; 22/05/2023

OPTIMISATION OF THE PROFILES IN INITIAL CRUISE CONDITIONS

- Modification of the parameters and generation of the CFD mesh at each iteration
- Simulations of the flow using CFD Euler
- Reduction of the overall drag coefficient $\Delta C_D = -16\%$

Convergence of the optimisation process

THE FRENCH AEROSPACE LAB

OPTIMISATION OF THE PROFILES IN INITIAL CRUISE CONDITIONS

the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

MANUAL AERODYNAMIC DESIGN

MANUAL DESIGN STEPS

• Manual modification of the local thickness of the profiles $0\% < \frac{x}{c} < 40\%$

Modifications of the root profile

Modifications of the intermediate profile

- Validation of the wing surface curvature through CAD software
- High-Fidelity CFD RANS computations at $C_L = [0.3; 0.4; 0.5; 0.6; 0.7; 0.8]$

Modifications of the tip profile

OPTIMUM SBW CONFIGURATION DRAG BREAKDOWN

PRESSURE COEFFICIENTS RANS AT CL = 0.7

SBW Ref. Configuration SBW Optimum Configuration

28 28.5

26 26.5

х

27 27.5

-HARWARD

Co-funded by

the European Union U-HARWARD: Second Dissemination Event: May 24, 2022

AERODYNAMIC MANUAL DESIGN PROCESS

SUMMARY AND PERSPECTIVES

- Structural Design and aero-elastic analysis:
 - > FIRST SIZING STRUCTURE WITH POTENTIAL ROOMS FOR IMPROVEMENT
 - FIRST ASSESSMENT OF THE FLUTTER RESPONSE
 - > AIRCRAFT SIZING COHERENT WITH THE ASSUMPTIONS OF THE OAD PROCESS
- Aerodynamic design process:
 - AERODYNAMIC OPTIMIZATION BASED ON MEDIUM-FIDELITY (EULER) SIMULATIONS FOR THE CRUISE CONDITIONS
 - > VALIDATION THROUGH HIGH-FIDELITY (RANS) COMPUTATIONS
 - FINAL MODIFICATION OF THE GEOMETRY USING A CAD SOFTWARE AND HIGH-FIDELITY CFD COMPUTATIONS RESULTING IN ~ 10% DRAG REDUCTION
 - > CONFIGURATION USED AS BASELINE FOR CLEAN AVIATION ACAP AND UPWING PROJECTS

ENGAGE with US!

www.clean-aviation.eu

Visit our online stand at https://cleansky.virtualfair.be/

Co-funded by the European Union