

CONCEPTUAL AND PRELIMINARY DESIGN OF HIGH ASPECT RATIO AIRCRAFT CONFIGURATIONS: RESULTS AND OUTLOOK

Christophe DAVID (ONERA) Emmanuel BENARD (ISAE-SUPAERO) Francesco TOFFOL (POLIMI) Jonathan COOPER (University of BRISTOL)

Co-funded by the European Union

INTRODUCTION

- Rationale of High Aspect Ratio Wing (HARW), Advanced Cantilever Wing Configuration (CNT), Strut-Braced Wing (SBW) and flared folding wingtips (FFWT):
 - HARW permits better aerodynamic efficiency: $\frac{L}{D_{max}} = \frac{1}{2} \sqrt{\frac{e \pi AR}{CD_0}}$ (reduced lift-induced drag)

- FFWT alleviates aerodynamic loads by allowing floating wingtips
- SBW enables to achieve HARW with limited wing weight penalty
- Top Level Aircraft Requirements for an A321LR-like aircraft:
 - Range: 7400 km (4000 NM)
 - Payload: 18t (200 pax)
 - Mach: 0.78

Fold angle 6

• Development of an Overall Aircraft Design (OAD) approach combining conceptual design and highfidelity aerodynamic and structural analyses

- Generation of a family of increased aspect ratio wings: the wing surface, the engine position and taper ratio are kept constant, AR is modified.
- MDO sizing including both maneuvers and gust load conditions (CS25), for both Aluminum and Composites cases using NeOpt tool.
- An increased AR reduces the induced drag term, but the WRBM increases and what about emissions? There is room for trade-off studies

 Through the meta-model it is possible to generate several models, update existing ones and post-process analysis results.

LESSONS LEARNED

The emissions calculation is based on CFD based drag estimation and a modified version of Breguet formula, including the complete flight mission, for a 4000 NM typical mission.

Wing	AR	Half Wingbox Mass [kg]	Trip Fuel [kg]	Nox Flight [kg]	CO2 Flight [kg]	Delta Trip Fuel
AL7015-16-15	10	2070	22969	306	69938	0.0%
	13	2273	21081	282	63990	-8.2%
	15	2461	20924	280	63496	-8.9%
	17	2689	21522	288	65381	-6.3%
	19	3014	21558	289	65492	-6.1%
CHUD Red LAMA	10	1378	22566	300	68668	-1.8%
	13	1692	20761	277	62983	-9.6%
	15	2056	20701	277	62793	-9.9%
	17	2423	21384	286	64944	-6.9%
	19	2813	21456	287	65171	-6.6%

Due to the mass penalty with increased AR, the optimal value in terms of fuel burn saving and total emissions is **AR=15**

FWT CONFIGURATION

- Semi Aeroelastic Hinge concept enables aircraft with high aspect ratio wings to fit into airport gates and also exhibit gust loads alleviation and improved roll performance
- Wingtip local AoA reduces with increasing fold angle due to flare angle not being in streamwise direction - self-balanced in-flight
- > Fixed hinge during cruise for the maximum aerodynamic efficiency
- Hinge released during severe loadings e.g. manoeuvre and gust encounters to reduce dynamic loads - structural efficiency

LOADS ALLEVIATION BENEFIT

- Study performed to investigate aircraft weight and performance for different AR and wingtip size
- Significant reduction in the wing bending moment by releasing the hinge during manoeuvre (2.5g) and gust (1-Cosine)
- Reduction of the design loads leads to the decrease in wing weight
- Improved load alleviation was achieved by moving the hinge position inboard

IMPROVED AIRCRAFT PERFORMANCES

- Aerodynamic benefit obtained from increasing wing aspect ratio is compromised by the weight penalty
- Weight penalty is significantly mitigated by SAH
- Optimum performance was seen at approx. AR=19
- 5% improvement in aircraft range compared to conventional high aspect ratio designs

Range = $\frac{V}{SFC g} \frac{L}{D} \ln(\frac{W_i}{W_f})$

SBW CONFIGURATION

- The assessment of the benefit of strut-braced wings is done using following assumptions:
 - Rear engines
 - Reduced wing sweep angle (17.5° at 25% chord)
 - Thin airfoil (thickness=10%)
 - No buckling on strut
- OAD computations done using FAST × OAD

STRUCTURAL ANALYSIS FOR WEIGHT EVALUATION

A simple analytical beam-like model of SBW was developed based on

- Spar caps/web, skins and strut (in traction) analytical sizing
- Static loads (-1g and +2.5g manoeuver): elliptical distribution or VLM calc. And used for:
- Primary structure weight estimation at conceptual aircraft design
- Preliminary investigation of the SBW from a structural perspective: effects of AR, strut attachment
 location, strut traction force, wing-box thickness, ...

Example of parametric analysis of AR impact on wing + strut weight (optimization of spanwise strut attachment and strut traction

Analytical model of force/moment distributions in wing / strut

OAD RESULTS OF THE SBW

Tube-and-wing, AR=9.5, under-wing engines

- Tube-and-wing, AR=9.5, rear-fuselage engines
- 2: Tube-and-wing, AR=19, rear-fuselage engines
- If 2.1: SBW, junction at 65%, AR=19, rear-fuselage engines

Mass breakdown comparison for different aircraft concepts

Needed block fuel is reduced by 16% between c2.1 and c0

Investigations of AR impacts on block fuel for the SBW concept

CONCLUSIONS

- At OAD level:
 - Using a cantilever wing with new technologies (tailored high strength composite), aspect ratio of 15 should be optimal in terms of fuel consumption
 - Using flared folding wing tips, with the provided load alleviation and the associated mass reduction, the optimal aspect ratio is estimated at 19
 - Using strut-braced wing, with the assumption of no compression loads sustained by the strut, the estimated optimal aspect ratio is also around 19

ENGAGE with US!

www.clean-aviation.eu

Visit our online stand at https://cleansky.virtualfair.be/

Co-funded by the European Union